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We develop a low-temperature expansion for the finite-temperature dynamical structure factor of the spin
half Heisenberg chain with alternating nearest-neighbor exchange in the limit of strong alternation of the
exchange constants. We determine both the broadening of the low-lying triplet lines and the contribution of the
thermally activated intraband scattering.
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I. INTRODUCTION

Much is now known about the physics of quasi-one-
dimensional Heisenberg antiferromagnetic chain materials at
zero temperature. This understanding has benefited from
powerful analytical techniques �see, e.g., Refs. 1–4 and ref-
erences therein� as well as highly accurate experiments per-
formed at temperatures much smaller than the relevant ex-
change constants.5 As such, the regime in which these
materials are understood is dominated by quantum fluctua-
tions. In contrast, far less is known about their finite-
temperature behavior, where there is an interplay of quantum
and thermal fluctuations.6–11

Although the chemistry of these materials can be exceed-
ingly complicated, a wide range of their properties, up to
energy scales set by their exchange constants, are well de-
scribed by simple lattice models of the form

H = �
i,j

JijSi · S j . �1�

Here Jij is the exchange constant between spins at sites i and
j.

Perhaps the most encompassing probe of the properties of
spin chains is inelastic neutron scattering. Such experiments
provide detailed information on the chains’ excitations.12 In
theoretical terms, these experiments specifically yield the
spin dynamical structure factor,

S����,Q� = −
1

�

1

1 − e−�� Im������,Q�� ,

�����,Q� = − �
0

�

d� ei�n� 1

N�
l,l�

�e−iQ�l−l���Sl
����Sl�

� 	��n→�−i�.

�2�

Here �=1 /kBT and � ,�=x ,y ,z and the brackets imply a
thermal expectation. We have used the Matsubara formalism
with imaginary times � and frequencies �n. The dynamical
susceptibilities ����� ,Q� take their simplest form at zero
temperature, where they provide direct information on the
energies and lifetimes of the spin excitations. At finite tem-
perature the ����� ,Q� become more complex functions, de-
termined now by a competition between thermal and quan-
tum effects. The value of the exchange coupling J determines
the extent of the temperatures’ role. If J	T, there exists an

appreciable range of energies � over which inelastic
neutron-scattering experiments effectively probe the zero-
temperature form of ����� ,Q�. However, if J
T or one is
interested in energies �, on the order of T, the effects of
temperature must be taken into account when calculating
����� ,Q�.

In this paper, we are interested in calculating the dynami-
cal structure factor at low but finite temperature for a class of
dimerized spin-1/2 chain materials. These materials are well
described by the Hamiltonian

Hdimer = �
a=0

N/2−1

�JS2a · S2a+1 + J�S2a+1 · S2a+2� . �3�

Here J is the exchange coupling, through which pairs of
neighboring S=1 /2 spins form singlet dimers while J�=�J
gives the strength of the interdimer interaction. We will be
interested in the case �
1. The lowest-lying excitations of
this model, which we will refer to as magnons, are charac-
terized by a gap �, which �at zeroth order in �� represents
the cost of breaking one dimer. With small but finite �, the
magnons disperse according to

�k = J −
�J

2
cos�kd� ,

where d is the interdimer distance. A particular realization of
this material is Cu�NO3�2 ·2.5H2O, where J=5.22 K and �
=0.27.13,14 While this material has been studied by inelastic
neutron scattering at 300 mK,13 a temperature far smaller
than �=4.4 K, more recent experiments have been
performed15 at temperatures on the same order as the gap
where thermal effects on the form of ����� ,q� cannot be
ignored. Previously, much theoretical work has concentrated
on the zero-temperature limit, establishing various properties
of the spectrum of Eq. �3� including multiparticle continua
and bound states16–23 as well as spectral weights24,25 and the
dynamical structure factor.22,25,26 However, at finite tempera-
ture, the most pertinent features to explore are the broaden-
ing of the single-particle modes, due to interaction with the
thermally populated background, and the low-frequency re-
sponse arising from intraband transitions.

By virtue of the spin-rotational invariance of the Hamil-
tonian �3�, all off-diagonal elements of the dynamical sus-
ceptibility vanish and the three diagonal elements are the
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same, i.e., �xx�� ,Q�=�yy�� ,Q�=�zz�� ,Q�. In what follows
we will therefore only consider �zz.

Accounting for the effects of temperature in the dynami-
cal susceptibilities makes this problem particularly challeng-
ing. To see why, we consider a Lehmann expansion of the
spin response function in terms of the eigenstates of the
model ��l	�. Defining C�� ,x�= �Sj

z���Sk
z	, where x=Rj −Rk,

this expansion takes the form

C��,x� =
1

Z
�
l,m

e−�El�l�Sj
z����m	�m�Sk

z�l	 . �4�

The double sum in this representation for C�� ,x� arises on
one hand from the Boltzmann sum �le

−�El, where El is the
energy of eigenstate �l	, and on the other hand from an inser-
tion of a resolution of the identity between the two operators
Sj

z��� and Sk
z. This expansion renders the task of finding

C�� ,x� into a matter of computing individual matrix ele-
ments �l�Sj

z����m	. At zero temperature, this computation is
simplified on two counts:3 �i� the sums over eigenstates in
Eq. �4� reduce to a single sum and �ii� the matrix elements
needed are of a single type, namely, those connecting the
ground with various excited states. At finite temperature,
however, we must deal both with the double sum in Eq. �4�
and the matrix elements in their full generality.

To make this task tractable, we exploit the fact that the
spin chain material is gapped. On a qualitative level the ex-
citations can be divided according to the number n of mag-
nons they contain. The energy of an excitation with n mag-
nons is then at least n�. This notion is imprecise because the
number of magnons is not a good quantum number; none-
theless, at small �, it can serve as a rough guide to the
excitations’ energies. In turn, provided the temperature does
not exceed the gap �, the contribution to the sum in Eq. �4�
of excitations containing large numbers of magnons will be
exponentially suppressed by the Boltzmann factor e−�El. In
such a case, we thus need only to consider excitations in the
Boltzmann sum �le

−�El, involving only a few magnons. Con-
comitantly, provided we are interested in determining
Im �zz�� ,Q� at energies not far in excess of the gap, we can
similarly restrict the sum in Eq. �4� ��m� arising from the
resolution of the identity.

The evaluation of �zz�� ,Q� is, however, more delicate
than what the above implies. When evaluating the leading
terms in the Fourier transform of the spectral representation
�4�, one finds divergences when the frequency approaches
the magnon dispersion. Such divergences are expected, since
the spectral sum still contains the T=0 result, which is a
delta function at the position of the single-magnon disper-
sion. On physical grounds the single-magnon line is expected
to broaden at T0. Analytically this is achieved by carrying
out a resummation on the divergences of the higher-order
terms in the expansion. Specifically, the sum in Eq. �4� can
be reorganized according to a Dyson’s equation,11 where we
write �zz�� ,Q� in the form

�zz��,Q� =
D��,Q�

1 − D��,Q����,Q�
. �5�

Here D�� ,q� can be thought of as the propagator for nonin-
teracting magnons and ��� ,q� is the magnon self-energy.

The key is to match the perturbative expansion of Eq. �5�,

�zz��,Q� = D��,Q� + D2��,Q����,Q� + ¯ , �6�

to the spectral representation of �zz�� ,Q�, which is given in
terms of the Fourier transform of Eq. �4�. In this way we
obtain a controlled low-temperature expansion of the self-
energy ��� ,q� in lieu of �zz�� ,Q�.

This approach has been used successfully in the study of
finite-temperature dynamical correlation functions in gapped
one-dimensional quantum antiferromagnets with continuum
integrable field-theoretic representations.11 There the matrix
elements �l�Sj

z�0��m	 were computed exactly via analyticity
constraints coming from integrability.3,27 However, the
model of the dimerized spin chain �Eq. �3�� is not exactly
solvable. But because � is small, we can compute the nec-
essary matrix elements perturbatively in �.

The T0 dynamical susceptibility has been studied pre-
viously using exact diagonalization of finite-length chains.10

We believe our approach provides a useful complement to
this work. The numerical approach yields results for all �
and is not restricted to small temperatures. However, the sys-
tem size that can be studied is quite small. We, on the other
hand, must proceed perturbatively in � and are restricted to
low temperatures, but our calculations do not suffer from
finite-size effects. Moreover, the nature of low-lying excita-
tions is more apparent and we can identify the specific pro-
cesses that give rise to the various finite-temperature effects
in the structure factor.

With this in mind, a specific feature that we focus upon in
our analysis is the presence of temperature-induced neutron-
scattering intensity at low frequencies much smaller than the
zero-temperature gap. The origin of this intensity is intra-
band scattering. The analogous phenomenon in Ising-type
antiferromagnetic spin chains was first pointed out by
Villain28 and was first observed in the anisotropic spin chain
material CsCoBr3.29,30 For Ising antiferromagnets, the rel-
evant excitations are domain walls in the antiferromagnetic
order. In contrast, in the dimer model, the relevant excita-
tions correspond to low-lying magnons. In both cases these
excitations experience intraband transitions.

An outline of this paper is as follows. In Sec. II, using
first-order degenerate perturbation theory, we determine the
dimer model’s low-lying spectrum and the corresponding
matrix elements. In Sec. III we discuss in detail how to use
these ingredients to compute the susceptibility �zz�� ,Q�. In
particular, we explain the use of the resummation implied by
the Dyson equation. In Sec. IV, we present the actual results
for �zz�� ,Q�.

II. GROUND STATE AND EXCITED STATES OF WEAKLY
COUPLED DIMERS

Our starting point is the Hamiltonian given in Eq. �3� with
an even number of sites N and periodic boundary conditions.
For small �=J� /J, we split the Hamiltonian into a solvable
part proportional to J, H0, and a perturbation H� �propor-
tional to J��,
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Hdimer = �
a=0

N/2−1

�JS2a · S2a+1 + J�S2a+1 · S2a+2� = H0 + H�.

�7�

We first make some remarks about the J�=0 case, in
which the spins decouple into pairs on the bonds J. The
ground state of H0 is unique and is given by

�0	 = 
a=0

N/2−1

�0	a, �8�

�0	a =
1
�2

��↑	2a�↓	2a+1 − �↓	2a�↑	2a+1� �9�

so that �0	0 is a singlet between sites 0 and 1. We take the
associated eigenvalue E0=−3NJ /8 as zero energy.

A. Excitations

Excitations are formed by breaking singlets to create trip-
lets. The spectrum of H0 then consists of degenerate levels at
energies nJ relative to the ground state, where n�N /2 is the
number of triplets. These excitations are dispersionless hard-
core bosons. When the perturbation H� is applied, the degen-
eracies are removed, and coherent single-particle excitations
with dispersion relation �p are formed. These magnons are
not free, but interact with each other through the perturbation
H� in addition to being subject to the hard-core constraint.
The first-excited state consists of N /2−1 singlets and one
triplet, leading to a total spin Stot=1.

We define da�m� as the operator that breaks a dimer be-
tween sites 2a and 2a+1, creating a state with z component
of spin m. For example the explicit form of one of these
operators is

da�0� = da
†�0� = 2S2a

z , �10�

although it is important to realize that d��1��d†��1�. A
translationally invariant state is formed by taking the Fourier
transform

�p,m	 =� 2

N
�
a=0

N/2−1

e2ipada�m��0	 . �11�

Here the factor of 2 in the exponent accounts for the inter-
dimer distance. Periodic boundary conditions lead to the
quantization condition

eipN = 1,

so that

p =
2�n

N
, n = 0,1,2, . . . ,N/2 − 1.

Strictly at the point �=0, these single-particle excitations are
N /2-fold degenerate with a flat dispersion �p=J. A finite
value of � causes magnons to “hop.” To the first order in �,
the dispersion is

�p = J −
J�

2
cos�2p� , �12�

resulting in a gap

� = J −
J�

2
. �13�

Using translational and spin-rotational invariances, we can
express two-magnon states �to lowest order in �� in the form

�p1,p2,S,m	 = NS�p1,p2� �
a=1

N/2−1

�
b=0

a−1

�ab
S �p1,p2��ab

S,m�0	 .

�14�

Here S=0,1 ,2 and the normalization N will, in general, be
dependent on the linear and angular momenta. Explicit ex-
pressions for the spin part �ab

S,m are given in Appendix A. The
wave function is given by

�ab
S �p1,p2� = e2i�p1a+p2b� + Ap1p2

S e2i�p1b+p2a�. �15�

Embodied in the nontrivial relative phase Ap1p2

S is the
magnon-magnon interaction. For �=0 the form of A is un-
specified because the magnons cannot hop onto the same site
and as such do not interact. To the lowest order in �, the
correct basis in degenerate perturbation theory is given by
requiring

P2H��p1,p2,S,m	 = −
J�

2
�cos�2p1� + cos�2p2���p1,p2,S,m	 ,

�16�

where P2 is the projection operator onto the two-particle
states. When the triplets in the sum given in Eq. �14� are well
separated ��a−b�1�, the condition �16� is trivially satisfied,
independently of A. When the triplets are neighboring ��a
−b�=1�, we find

Ap1p2

0 = −
1 + e−2i�p1+p2� − 2e−2ip2

1 + e−2i�p1+p2� − 2e−2ip1
, �17a�

Ap1p2

1 = −
1 + e−2i�p1+p2� − e−2ip2

1 + e−2i�p1+p2� − e−2ip1
, �17b�

Ap1p2

2 = −
1 + e−2i�p1+p2� + e−2ip2

1 + e−2i�p1+p2� + e−2ip1
. �17c�

The magnons therefore experience both an infinite onsite re-
pulsion and a nearest-neighbor momentum and spin-
dependent interaction. Periodic boundary conditions and the
restriction on the sums lead to the conditions

Ap1p2

S = eip1N and Ap1p2

S eip2N = 1, �18�

with the implication that the quantization of the two-particle
momenta depends on the total spin S. These are in fact the
Bethe-ansatz equations for the spin-1/2 XXZ chain, where the
sectors S=0,1 ,2 correspond to anisotropies �=1, + 1

2 ,− 1
2 ,

respectively. Solving these equations for finite N to find p1
and p2 is a numerical task, which we outline in Appendix B.
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We note here, however, that the solutions may be complex,
leading to bound states, in agreement with results in the
literature.16–18 For notational convenience, we define a phase
shift by

�p1p2

S = −
i

2
ln�Ap1p2

S � . �19�

For real p1 , p2, the normalization of a two-particle state is
given by

NS�p1,p2� = �N

2
�N

2
− 1��

− �N

2

cos�2�p1p2

S � − cos�2p1 − 2p2 − 2�p1p2

S �

1 − cos�2p1 − 2p2�
�−1/2

.

�20�

We note that two-magnon states have the symmetry

�p1,p2,S,m	 = e−2i�p1p2

S
�p2,p1,S,m	 . �21�

To avoid an overcomplete basis we make the restriction p1
 p2.

B. Matrix elements

For small � the gap to excitations is of order J and
the states with n magnons are suppressed by a factor
exp�−�nJ� in the thermal trace �2�. At low temperatures �J
	1, we then make the approximation that the relevant states
are those with n�2 magnons. Due to the isotropy in spin
space of Hdimer, we require only the �zz component of the
dynamical susceptibility. In addition the Hamiltonian is in-
variant under translations by two sites. When evaluating Eq.
�2�, it is then sufficient to consider matrix elements of the
form �l�Sj

z�m	, where j=0,1 and l ,m correspond to states
with zero, one, or two magnons. Calculating such elements is
simple to zeroth order in perturbation theory and the results
are summarized in Tables I and II. Certain matrix elements
are not given in the tables because they are identically zero.
This can be seen by taking account of the fact that the op-
erator Sl

z commutes with the total z component of spin, lead-

ing to the transition selection rule �Sz=0. In addition some
elements are zero by inspection of the states given in Eqs.
�A2a�–�A2i�.

We define the functions

US�p,p1,p2� =
N

2
NS�p1,p2�e−i�p1p2

S � sin�p − p1 + �p1p2

S �

sin�p − p1�

+
sin�p − p2 − �p1p2

S �

sin�p − p2�
� , �22�

and

VS�S�p1�,p2�,p1,p2� = �N

2
�2

NS�p1,p2�NS��p1�,p2��exp�i��p1p2

S

− �p1�p2�
S� ��� sin�p1 − p1� − �p1p2

S + �p1�p2�
S� �

sin�p1 − p1��

+
sin�p2 − p2� + �p1p2

S − �p1�p2�
S� �

sin�p2 − p2��

+
sin�p1 − p2� − �p1p2

S − �p1�p2�
S� �

sin�p1 − p2��

+
sin�p2 − p1� + �p1p2

S + �p1�p2�
S� �

sin�p2 − p1��
� , �23�

which are useful when calculating matrix elements that in-
volve two-particle states.

III. SPECTRAL REPRESENTATION AND RESUMMATION

Taking the definition of the susceptibility in the Matsub-
ara formalism �2�, it is helpful to expand in terms of opera-
tors at even and odd sites,

TABLE I. Nonzero matrix elements of the interband type for Sj
z

acting at sites j=0,1.

�0�Sj
z�p ,m	 �−1� j� 1

2N�m,0

�p1 , p2 ,0 ,0�Sj
z�p ,0	 �−1� j� 2

3N3 U0�p , p1 , p2�

�p1 , p2 ,2 ,0�Sj
z�p ,0	 �−1� j+1� 4

3N3 U2�p , p1 , p2�

�p1 , p2 ,1 ,1�Sj
z�p ,1	 �−1� j+1� 1

N3 U1�p , p1 , p2�

�p1 , p2 ,1 ,−1�Sj
z�p ,−1	 �−1� j� 1

N3 U1�p , p1 , p2�

�p1 , p2 ,2 ,1�Sj
z�p ,1	 �−1� j+1� 1

N3 U2�p , p1 , p2�

�p1 , p2 ,2 ,−1�Sj
z�p ,−1	 �−1� j+1� 1

N3 U2�p , p1 , p2�

TABLE II. Nonzero matrix elements of the intraband type for Sj
z

acting at sites j=0,1.

�p� ,m�Sj
z�p ,m	 1

N ��m,1−�m,−1�

�p1� , p2� ,1 ,0�Sj
z�p1 , p2 ,0 ,0	 � 8

3N4 V10�p1� , p2� , p1 , p2�

�p1� , p2� ,2 ,0�Sj
z�p1 , p2 ,1 ,0	 � 4

3N4 V21�p1� , p2� , p1 , p2�

�p1� , p2� ,1 , �1�Sj
z�p1 , p2 ,1 , �1	 �� 1

N4 V11�p1� , p2� , p1 , p2�

�p1� , p2� ,2 , �1�Sj
z�p1 , p2 ,1 , �1	 �� 1

N4 V21�p1� , p2� , p1 , p2�

�p1� , p2� ,2 , �1�Sj
z�p1 , p2 ,2 , �1	 �� 1

N4 V22�p1� , p2� , p1 , p2�

�p1� , p2� ,2 , �2�Sj
z�p1 , p2 ,2 , �2	 �� 4

N4 V22�p1� , p2� , p1 , p2�
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�zz��,Q� = − �
0

�

d� ei�n� 1

N �
l,l�=0

N/2−1

�e−i2Q�l−l����S2l
z ���S2l�

z 	

+ �S2l+1
z ���S2l�

z 	e−iQ + eiQ�S2l
z ���S2l�+1

z 	

+ �S2l+1
z ���S2l�+1

z 	���n→�−i�. �24�

Using translational symmetry and grouping terms according
to magnon number, the susceptibility can be written as

�zz��,Q� �
1

Z
�

r,s=0

�

Crs,

Crs = − �
0

�

d� ei�n� 1

N �
l,l�=0

N/2−1

e−i2Q�l−l�� �
�r,�s

�e−�E�r

�e−��E�s
−E�r

�ei2�l−l���P�s
−P�r

�M�r�s
��n→�−i�. �25�

Here �s is a multi-index enumerating all s-particle states, E�s
and P�s

are the energy and momentum of the excited state
��s	, Z is the partition function, and

M�r�s
= ���r�S0

z ��s	�2 + eiQ��r�S0
z ��s	��s�S1

z ��r	 + ���r�S1
z ��s	�2

+ e−iQ��r�S1
z ��s	��s�S0

z ��r	 . �26�

We have also suppressed the energy and momentum labels
on Crs for notational simplicity. Carrying out the Fourier
transform, we have

Crs = �
�r,�s

N

4
�Q+P�r

,P�s

e−�E�r − e−�E�s

� + i� + E�r
− E�s

M�r�s
. �27�

The nonvanishing contribution at T=0 is obtained from
C10+C01,

C10 + C01 =
1 − cos�Q�

4
�1 − e−��Q�� 1

� + i� − �Q

−
1

� + i� + �Q
� �28�

��1 − e−��Q�D��,Q� . �29�

D�� ,Q� is then the bare magnon propagator. The remaining
Crs terms, up to C12+C21, are obtained in a simple manner
using Eq. �27� and the matrix elements in Tables I and II,

C11 =
1 + cos�Q�

N
�

p

e−��p − e−��p+Q

� + �p − �p+Q + i�
, �30�

C12 + C21 =
1 − cos�Q�

4 � 2

N�2

�
S

�
p1p2

�2S + 1

3 �US
2�Q + p1

+ p2,p1,p2��e−��Q+p1+p2 − e−���p1
+�p2

��

�� 1

� + �Q+p1+p2
− �p1

− �p2
+ i�

−
1

� − �Q+p1+p2
+ �p1

+ �p2
+ i�� . �31�

We reiterate that the allowed values of p1 , p2 in the sum
above depend on S and that the sum is only over those mo-
menta that produce unique two-particle states.

We now make some initial remarks about the structure of
the Crs terms. First, the two-site dimer basis leads to a
Q-dependent prefactor that differs between the interband
terms Cr,r+1 ,Cr+1,r and intraband terms Crr. Second, the
C12+C21 term will diverge with system size as N. This di-
vergence is expected and should cancel with terms arising
from an expansion of the partition function Z. Lastly, the �
dependence in the denominators is such that interband terms
diverge as �→�Q. This divergence is reflected in the intra-
band terms, which diverge for �→ �J� sin�Q�. Higher-order
terms have stronger divergences. This standard behavior is a
consequence of the essentially nonperturbative nature of the
finite T-magnon lifetime. Perturbation theory is unable to
capture, order by order, the decay-enhancing effect of
particle-particle scattering processes, hence, lifetimes remain
infinite to all orders. Treating the interaction accurately and
rendering the lifetimes finite require a summation of
perturbation-theory terms to infinite order. We achieve this
infinite summation for certain processes as follows. Taking
into account interactions between the magnons by a Dyson
equation, we conclude that we can write

�zz��,Q� =
D��,Q�

1 − D��,Q����,Q�
. �32�

Expanding this we obtain

�zz��,Q� = �D��,Q� + D2��,Q����,Q� + . . .� . �33�

On the other hand, from our low-temperature expansion of
the spectral representation, we have

�zz��,Q� =
1

Z
�C01 + C10 + C11 + C12 + C21 + ¯�

=
1

1 + Z1 + Z2 + . . .
��1 − e−��Q�D��,Q� + C11 + C12

+ C21 + ¯�

= �1 − e−��Q�D��,Q� + C11 + C12 + C21

− Z1�1 − e−��Q�D��,Q� + ¯

= D��,Q� + �C11 + C12 + C21 − Z1�1 − e−��Q�

�D��,Q� − e−��QD��,Q�� + ¯ . �34�

The contribution to the partition function from the one-
particle states Z1=3�pe−��p must be included to cancel the N
dependence of the C12+C21 contribution. Comparing the two
expansions, we make the identification

���,Q� � D−2��,Q���C11 + C12 + C21� − �Z1�1 − e−��Q�

+ e−��Q�D��,Q�� . �35�

Finally we calculate the quantity of experimental interest as

Szz��,Q� = − lim
�→0

1

�

1

1 − e−�� Im� D��,Q�
1 − D��,Q����,Q�� .

�36�
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IV. RESULTS AND DISCUSSION

We now choose J=1 and J�=0.1 so that �=0.1 is small as
required by our expansion. We consider temperatures less
than the gap, so that the low-magnon number approximation
holds. We then calculate the dynamical structure factor at a
given � and Q numerically. Sums over momenta such as
those in Eqs. �30� and �31� are performed for systems of N /2
dimers. Analytically, the standard procedure for evaluating
Eq. �2� is to take the thermodynamic limit, perform the re-
sulting momentum integrals, extract the imaginary part of the
resulting susceptibility, and finally take the limit �→0. The
zero-temperature result for Szz�� ,Q� then takes the form of a
delta function at �=�Q. For the purposes of numerics, it is
necessary to stipulate � before performing the sums. This
results in a broadened zero-temperature result, a Lorentzian
peak of width �. To obtain accurate results at finite T, this
width must be small in comparison with the thermally acti-
vated broadening, which scales as J�e−�J. In contrast, to
avoid finite-size effects, the sums must be evaluated on a
grid in wave vector space that is fine enough to resolve the
Lorentzian. The condition for producing accurate numerics is
then

e−�J 	
2�

J�


4�

N
. �37�

In principle by increasing the system size N, very small val-
ues of � could be used. However, as explained above this is
only necessary at very low temperatures, where the broaden-
ing is not sufficiently asymmetric to be interesting. For the
range of temperatures we investigate, we find a suitable
value of � to be 0.001. When calculating the intraband re-
sponse, we typically use systems of size N /2=600. The in-
terband response is less sensitive to finite-size effects and
sums, using a smaller system size N /2=400, are permissible.
We find that the effects of using a larger number of dimers
are negligible. If the delta function in Eq. �27� is ever to be
satisfied, we must restrict the external momentum to Q
=4�n /N with integer n. We leave the discussion of further
issues affecting numerical accuracy, in particular, bound-
state solutions of Eq. �18� to Appendix B.

We first consider the behavior of the one-magnon or in-
terband response and examine the lineshape in energy by
fixing the external wave vector Q. Figure 1 shows the dy-
namical structure factor at Q=� for a range of temperatures.
At temperatures less than the gap, the main feature is a peak
at �=�Q. At temperatures below T
0.3J, the peak is ap-
proximately Lorentzian. The maximum response falls rapidly
with increasing temperature and the peak broadens asym-
metrically. In particular the peak becomes skewed with a tail
extending toward energies �
J.

The degree of asymmetry is large compared to that found
for a variety of other spin chains using a semiclassical
approach.7,8 Instead it is similar to the asymmetry found by
exact diagonalization.10 The broadening also resembles that
found for two integrable spin chains in Ref. 11, which uses
the same resummation scheme as this paper. Most impor-
tantly the asymmetry has been found to be consistent with
recent data on copper nitrate.15 We also point out that the

asymmetry is primarily a consequence of the two-magnon
interband terms C12+C21. Intraband terms Crr have vanish-
ing spectral weight in this region and their lack of influence
is confirmed by observing that the one-magnon mode is un-
affected if we neglect them in the resummation.

The behavior in wave-vector space is dominated by the
static structure factor, 1−cos�Q�, arising from the two-site
dimer basis. As a result, the response is maximal for Q
= �2n+1�� and disappears altogether at Q=2n� as in Figs. 2
and 3 �for integer n�. Exactly at Q= �2n+1�� /4, the suscep-
tibility �zz is a symmetric function of � about the point �
=J; however, the dynamical structure factor Szz is not sym-
metric because spectral weight is shifted to higher energies
by the factor �1−e−���−1.

The direction of asymmetry in the dynamical response at
�
�Q can be understood qualitatively in terms of a joint
density of states for transitions between occupied one-
magnon and unoccupied two-magnon states. For �0, this
takes the form
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FIG. 1. The one-magnon response at Q=� for N /2=400. At T
=0.2J the lineshape is nearly Lorentzian �inset� but is increasingly
asymmetric as temperature approaches the energy gap.

0.9 1 1.1
ω/J

0

1

2

3

4

5

6

In
te

ns
ity

(o
ffs

et
) 0.1 π

0.2 π

0.3 π

0.4 π

0.5 π

T=0.5 J

FIG. 2. Wave-vector dependence of the one-magnon or inter-
band response. The peak position is given by �=�Q. At Q=0 the
response vanishes. Top: Wave vectors between Q=2� /10 and � /2.
The vertical axis is offset by integer values 5−m for Q=m� /10.
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N1→2 = �
p,p1,p2

n�p�n̄�p1,p2��Q+p,p1+p2
��+�p,�p1

+�p2
. �38�

Here n�p� is the thermal occupation number for a one-
magnon state with momentum p and n̄�p1 , p2� is the prob-
ability that the two-magnon state characterized by momenta
p1 and p2 is unoccupied. At low temperatures and weak in-
terdimer interactions, we have approximately

n�p� � e−��p, n̄�p1,p2� � �1 − e−��p1��1 − e−��p2� .

�39�

For −� /4�Q�� /4 and � /4�Q�3� /4, this function is
skewed toward higher and lower energies, respectively. On
the other hand the specific form of the lineshape is dictated
by the matrix element M12 and hence by the magnon-
magnon interaction. The fact that the lineshape of the dy-
namical response at ���Q is skewed toward low frequen-
cies in some regions of the Brillouin zone and toward high
frequencies in others is a consequence of the smallness of the
ratio of bandwidth to magnon gap. This should be contrasted
to the findings of Ref. 11 for the lineshape in the O�3� non-
linear sigma model, for which the bandwidth is infinite and,
concomitantly, the asymmetry was found to always extend
toward higher energies.

Next we turn to the intraband response. When magnons
are thermally excited, incident neutrons can scatter them
within the same band with energy transfers, which are small
compared to the gap. Accordingly, at finite temperatures,
there is a spin response at energies �
0. To the lowest
order, the contribution to the intraband response is given by

−
1

�

1

1 − e−�� Im C11 =
1 + cos�Q�

2�

e−��J−�/2�

��J� sin�Q��2 − �2

�cosh��

2
cot�Q���J� sin�Q��2 − �2� ,

�40�

valid for ����J��sin�Q��. This response is bounded by in-

verse square-root singularities and has an overall magnitude
that grows with temperature as e−�J. We have calculated the
next leading contribution C22 using the matrix elements in
Table II and found it to exhibit a stronger divergence at �
= �J� sin�Q�. This shows that, just as for the interband con-
tributions, a resummation needs to be carried out. This is
achieved by including the intraband scattering contributions
in the low-temperature expansion of the self-energy in Eq.
�32�. A complication that arises in doing so is that because of
the different prefactors 1�cos�Q� for intraband and inter-
band scatterings, the result of the resummation is reliable
only at very low temperatures for certain wave vectors. For
such values of Q, higher-order terms, such as C22, should be
taken into account. However, a consistent treatment of such
terms would require the incorporation of interband contribu-
tions involving three-magnon states, which is beyond the
scope of this work. By including C11 in the resummation, we
remove the square-root singularities and associated thresh-
old. Instead the response has two finite peaks and falls rap-
idly to zero for ���J��sin�Q��. This is physically sensible
and is analogous to what is found for the intraband scattering
in the spin-1/2 Heisenberg-Ising chain.31 In Fig. 4 we show
the calculated intraband scattering at Q=� /2. The
Q-dependent range in � of this scattering compares well
with that calculated previously by exact diagonalization of
chains with N=16 sites.10 In that case, however, the small
system size limited the number of available transitions and
so the lineshape was not representative of the thermody-
namic limit.

In conclusion we have calculated the approximate dy-
namical structure factor at finite temperature of the alternat-
ing Heisenberg chain in the limits of strong alternation and
low temperature. The method we use has previously been
applied to integrable spin chains, but in this case, the system
is nonintegrable. We find that the lineshape of the lowest-
lying one-magnon mode is increasingly asymmetric with
temperature, a direct consequence of magnon-magnon inter-
actions. We also establish a prediction for the low-
temperature lineshape of the intraband scattering.
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FIG. 3. Wave-vector dependence of the one-magnon or inter-
band response. The peak position is given by �=�Q. At Q=0 the
response vanishes. Wave vectors between Q=3� /5 and �. The ver-
tical axis is offset by integer values 10−m for Q=m� /10.
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APPENDIX A: TWO-MAGNON STATES

The spin part of the two-magnon states is of the form

�ll�
S,m = �

�m1,m2�
cm1,m2

S,m dl�m1�dl��m2� . �A1�

The c’s are Clebsch-Gordan coefficients but the explicit ex-
pressions are given below for convenience,

�ll�
0,0 =

1
�3

�dl�1�dl��− 1� + dl�− 1�dl��1� − dl�0�dl��0�� ,

�A2a�

�ll�
1,0 =

1
�2

�dl�1�dl��− 1� − dl�− 1�dl��1�� , �A2b�

�ll�
2,0 =

1
�6

�dl�1�dl��− 1� + dl�− 1�dl��1� + 2dl�0�dl��0�� ,

�A2c�

�ll�
1,1 =

1
�2

�dl�1�dl��0� − dl�0�dl��1�� , �A2d�

�ll�
1,−1 =

1
�2

�dl�0�dl��− 1� − dl�− 1�dl��0�� , �A2e�

�ll�
2,1 =

1
�2

�dl�1�dl��0� + dl�0�dl��1�� , �A2f�

�ll�
2,−1 =

1
�2

�dl�0�dl��− 1� + dl�− 1�dl��0�� , �A2g�

�ll�
2,2 = dl�1�dl��1� , �A2h�

�ll�
2,−2 = dl�− 1�dl��− 1� . �A2i�

APPENDIX B: QUANTIZATION OF THE TWO-MAGNON
MOMENTA

In order to carry out momentum sums over two-particle
states on a finite lattice, we require knowledge of the allowed
values of the momenta p1 and p2 in each sector S. In practice,
this means that we must solve Eqs. �17� and �18� numerically
to find the �N /2−1�N /4 pairs �p1 , p2� allowed by the condi-

tion p1 p2. This is a problem usually encountered in models
solvable by Bethe ansatz.32

1. Real solutions

We first consider scattering states of two magnons, for
which p1 and p2 are both real. In each spin sector S, Eq. �18�
can be written in the form

eiNp1 = Ap1p2

S , eiNp2 = Ap2p1

S . �B1�

In order to enumerate all roots of the coupled Eq. �B1�, we
take the logarithm. We choose a branch cut, such that

p1 = −
i

N
ln�− Ap1p2

S � +
�

N
�2I1 + 1� ,

p2 = −
i

N
ln�− Ap2p1

S � +
�

N
�2I2 + 1� . �B2�

Here the integers I1,2 have the range 0� I1,2�N /2. We note
that I1� I2 implies that p1 p2 and, using the indistinguish-
ability of particles, we can restrict ourselves without loss of
generality to the case I1 I2. Using the parametrization �B2�,
it is now a relatively straightforward matter to determine real
roots corresponding to pairs of integers I1 I2 by standard
numerical root-finding algorithms.

There are a number of roots, which require special treat-
ment. Specifically, in the singlet sector, there is a class of real
roots �p1=2�I1+1�� /N , p2=0� and in the triplet and quintet
sectors, there are solutions �p1=� , p2=0�. For these cases the
derivation of Eqs. �20�, �22�, and �23� needs to be revisited.
For the special solutions in the singlet sector, the phase shift
is zero and one finds �setting p1=q�,

N2�q,0� = ��N

2
�2

− N�−1

, �B3�

U�p,q,0� = N�q,0��N

2
�p,0 −

N

2
�p−q,0 − 2� . �B4�

In the triplet and quintet sectors, the same expressions are
found, but the arguments of the two Kronecker deltas above
are never satisfied.

The matrix elements for C22 involving the special solu-
tions are similarly affected and need to be replaced by

VS�S�q�,0,p1,p2� = − N�q�,0�NS�p1,p2�

��N

2
�2

ei�p1p2

S �2 cos��p1p2

S �

+
sin�p1 − q� − �p1p2

S �

sin�p1 − q��

+
sin�p2 − q� + �p1p2

S �

sin�p2 − q��
� , �B5�

VS�S�q�,0,q,0� = N�q�,0�N�q,0��N

2
�2�N

2
− 4� , �B6�

JAMES, ESSLER, AND KONIK PHYSICAL REVIEW B 78, 094411 �2008�

094411-8



VSS�p1,p2,p1,p2� = 2NS
2�p1,p2��N

2
�2�N

2
− 1

−
sin�p1 − p2 − 2�p1p2

S �

sin�p1 − p2�
� . �B7�

The numerical root finder does not converge for O�N� pairs
of integers �I1

c , I2
c�. Most of these correspond to the complex

solutions of Eq. �B2�, which are discussed in Appendix B 2.
So far we have restricted our discussion to real roots with
distinct integers I1� I2. The reason for this restriction is that
I1= I2 corresponds generically to p1= p2, which does not
yield a valid solution of the Schrödinger equation. However,
in analogy to what was shown in Ref. 33, there are additional
“good” real solutions with repeating integers I1= I2, which
have to be treated with care.

2. Complex solutions

In addition to real roots, there exist complex solutions of
Eq. �B2�. These give rise to wave functions that exhibit an
exponential decay with respect to the distance between the
two magnons and hence correspond to bound states. As the
Eq. �18� is closed under complex conjugation, complex roots
must come in pairs,

p1 = x + iy, p2 = x − iy,x,y real. �B8�

Adding the two momenta using Eq. �B2� gives

p1 + p2 = 2x = �
2

N
�I1

c + I2
c + 1� . �B9�

The real component x is now uniquely defined by the inte-
gers I1

c , I2
c. Defining �s=S�S+1� /2−2 and substituting for x,

the value of y can be found by solving

eip1N = Ap1p1
�

S

or equivalently

eixNe−yN +
1 + e−4ix + �se

−2ixe−2y

1 + e−4ix + �se
−2ixe2y = 0 �B10�

using a Newton-Raphson method. The resulting values of y
are such that Ap1p1

�
S or, equivalently, eip1N is either very small

or very large. Consequently, in order to demonstrate that our
solutions satisfy both of the Bethe-ansatz equations given in
�18� numerically, the value of p1 must be known to very high
precision. Fortunately the matrix elements are less sensitive
and for the system sizes we consider, it transpires that to
evaluate C12+C21 accurately, 17 significant figures of p1 are
sufficient. The two-particle normalization for complex mo-
menta is given by

NS�x + iy,x − iy� = eyN/2�eixNN

2
�N

2
− 1�

−
N

2

cosh�yN� − cosh�4y − Ny�
1 − cosh�4y� �−1/2

,

�B11�

and for the matrix elements, the modification is

US�p,p1,p1
�� =

N

2
NS�x + iy,x − iy�

�
�1 + Ap1p1

�
S �cos�2p − 2x� − �e−2y + Ap1p1

�
S e2y�

cos�2p − 2x� − cosh�2y�
,

�B12�

which is an even function of y as required. We find that the
bound states affect only the fifth significant digit and higher
of C12+C21, so that they are negligible in comparison to the
contributions from other states.
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